Ecosystem Services in Land Management Decision Making: Development and Application of EcoAIMTM at Aberdeen Proving Ground

Pieter Booth

Presented to:

A Community on Ecosystem Services

Arlington, VA

December 11, 2014

Acknowledgments

Partners

- Dr. Jessica Turnley, Galisteo Consulting—Social Anthropologist
- Dr. James Boyd, RFF—Natural Resource Economist

APG Personnel

- John Wrobel—Acting Chief, DPW Natural Resources Branch
- Dr. Deidre DeRoia—Biologist, DPW Environmental Division
- Bryant Debruyne—Senior GIS Specialist, Michael Baker Jr. Inc.

ESTCP

 Dr. John Hall—Program Manager, Resource Conservation and Climate Change

What We Will Cover Today

- What EcoAlM™ is
- A little background on APG and the project
- Geospatial models applied at APG
 - Visual/landscape aesthetics Recreation
 - Nitrogen sequestration
- Habitat provisioning for biodiversity
- Illustrative scenario and results

Project Background

- Dept. of Defense owns/manages >30 million acres
- Spends \$4 billion/year on management to meet regulatory and mission requirements
- Missions affect ecosystem services (ES)
- Quality of ecosystem services have effect on missions
- Objective was to adequately account for ES tradeoffs to ensure sustainability of DoD mission at installations

Aberdeen Proving Ground

- Located in Maryland, on Chesapeake Bay
- 72,000 acres
- Active proving ground for testing weapons and technology
- BRAC-gaining installation
- Hosts 66 tenants (e.g., Chemical and Biological Center, Army R&D, etc)

What EcoAIMTM Is

A decision support framework and geospatial tool for managing ecological assets

- Main objective is trade-off analysis via scenario building
- Scalable process and tool
 - Spatial—project, parcel, watershed, geopolitical/management unit
 - Data needs—should not require data collection
 - Modeling sophistication—determined by need
- Focus on non-monetary quantification
 - Beneficiary preferences weighting
 - Relative ranking and proportional change

The EcoAIMTM Decision Support Framework

Problem formulation: Define decision space

- Objectives and priorities
- Ecosystem services of primary concern
- Define ecological production functions
- Identify endpoints stakeholders value

Develop and refine modeling parameters

Stakeholder Engagement Objectives

- Clarify installation's organizational structure
- Understand the natural resource management decision making process
- Describe how information flows within the organization
- Identify stakeholders' and beneficiaries' roles in decision making

Example Outcome: Mindmap of APG and Ecosystem Services

Models Selected to Reflect the ES of Greatest Importance to APG

- Aesthetics
 - Vista
 - Landscape
- Habitat provisioning for biodiversity
- Recreation
- Nutrient sequestration

Scenario Building and Analysis

- User can create polygons and see changes in ES scores by comparing to each other and to baseline
- Drill down to parcels to determine drivers
- Understand trade-offs between different ES

Landuse Change Scenario

Calculating Relative Ranking of Ecosystem Services

Vista Aesthetics

Vista Aesthetics Baseline

Landscape Aesthetics

Forest Landscape Aesthetics

- Landform Contrast
- Edge Complexity
- Surrounding Landuse
 Contrast
- Surrounding Landuse Diversity
- Forest Size
- Vegetation Interspersion
- Forest Density
- Forest Age

Nutrient Sequestration

Nutrient Sequestration Model

Land use/Stormwater Sewers (Acres)				
	Sewered	Unsewered		
Commercial	.75	23.3		
Industrial	6.04	5.62		
Institutional	0	0		
Transportation	1.09	79.98		
Multi-Family	0	0		
Residential	1.35	114.45		
Agriculture	0	46.7		
Vacant	0	47.07		
Open Space	2.35	84.19		
Total Contributing Area		412.88		

Pre-wetland

Calculate the areas of various LULCs in the drainage basin

P8
Delineates the drainage basin for each wetland

Calculate the nutrient and NPS contaminants loadings to the wetland

Post-wetland

	NPS loading (lbs/yr)	reduction (lbs/yr)	NPS loading (lbs/yr)
TDS	440679.14	U	U
TN	1734.86	173.49	1561.37
TKN	1404.8	U	U
DP	56.39	U	U
TP	206.52	51.63	154.89
CADMIUM	1.57	.79	.79

Loading

Riparian Analysis Toolbox

Determine the effectiveness (percent) of the wetland regarding nutrient and NPS contaminant reduction, based on buffer width, average slope, vegetation strip width, etc.

Reduction effectiveness

TN = 10%

TP = 25%

Total Nitrogen Loadings into Each Wetland

Total Nitrogen Outflow from Each Wetland

Final Results: ES Average Scores and Percent Change

ES	Baseline Case	Scenario 1
Biodiversity	3	2
Landscape Aesthetics	4	5
Recreation	9	9
Nutrient Sequestration	2	2
Vista Aesthetics	Patch Richness: 14	Patch Richness: 3
	Area (sq ft): >1.9 million	Area (sq ft): ~882,000
	SDI: 1.0	SDI: 0.96

Main Take Home Points

- Successful application of any ES quantification tool requires consideration of management context and decision space
 - Prioritizing modeling efforts
 - Interpreting and communicating results
- Flexible decision support framework allows for appropriate scaling of modeling and management application
- Flexible modeling approach allows for relative or absolute quantification of ES

